Optimization of Magnetic Properties in Cobalt Ferrite Nanocrystals

نویسندگان

  • Y. Cedeño-Mattei
  • O. Perales-Pérez
  • R. Singhal
  • M. S. Tomar
چکیده

Cobalt ferrite (CoFe2O4) possesses excellent chemical stability, good mechanical hardness and a large positive first order crystalline anisotropy constant, which made this ferrite a promising candidate for magneto-optical recording media. In addition to precise control on the composition and structure of CoFe2O4, the success of its practical application will depend on the capability of controlling particle size at the nanoscale. This size-controlled synthesis approach became possible by modifying the oversaturation conditions during ferrite formation in water. Optimum oversaturation was achieved by monitoring of the feeding flow-rate of reactant solutions. XRD and FT-IR analyses confirmed the formation of the ferrite structure after a reaction time as short as five minutes. M-H measurements verified the strong influence of synthesis conditions and crystal size on the magnetic properties of ferrite nanocrystals. The coercivity values increased from 210 Oe up to 1337 Oe under optimum synthesis conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physical and Magnetic Properties Comparison of Cobalt Ferrite Nanopowder Using Sol-gel and Sonochemical Methods

Cobalt ferrite or CoFe2O4 has unique physical and magnetic properties depend on its synthesis method. The application of cobalt ferrite as nanomedicine material become more interesting, however analysis on physical and magnetic properties based on synthesis method have not been discussed. The cobalt ferrite in this research was synthesised using two different methods: the ...

متن کامل

Magnetic Properties of Cobalt Ferrite synthesized by Hydrothermal and Co-precipitation Methods: A Comparative Study

The magnetic properties of calcined cobalt ferrite formed by nano-crystalline powders have been compared by two different methods (co-precipitation and hydrothermal). The structural properties of the produced powders were investigated by X-ray Diffraction (XRD), scanning electron microscopy (SEM). The results show that the formation of cobalt ferrite spinel structures is effected by changing me...

متن کامل

An Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application

In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...

متن کامل

An Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application

In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...

متن کامل

An investigation on synthesis and magnetic properties of nanoparticles of Cobalt Ferrite coated with SiO2

SiO2-coated Cobalt Ferrite (CoFe2O4) nanoparticles were obtained by the hydrolysis of tetraethylorthosilicate in the presence of CoFe2O4 nanoparticles in co-precipitation. The effects of SiO2coating on the magnetic properties of CoFe2O4 nanoparticles were investigated. The structural, morphological and magne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007